THESE

Présentée pour l’obtention du grade de DOCTEUR EN SCIENCES

En : Télécommunications

Spécialité : Télécommunications

Par : CHETIOUI Mohammed

Sujet

Design, Optimization and Diagnosis of Microwave Cascaded Filters and Patch Antennas using Coupling Matrix and DGS Techniques

Soutenue publiquement le 24 Novembre 2018, devant le jury composé de :

Mr Feham Mohammed Professeur Univ. Tlemcen Président
Mr Benahmed Nasredine Professeur Univ. Tlemcen Directeur de thèse
Mme Bouasria Fatima MCA Univ. Saida Co-Directeur de thèse
Mr Lasri Boumedienne Professeur Univ. Saida Examinateur 1
Mr Merad Lotfi Professeur ESSAT Examinateur 2
Abstract

Coupled resonator circuits are the basis for the design of two-port bandpass microwave filters. The design approach is based on synthesis of coupling matrix for multiple coupled resonators using Cauchy method and space mapping optimization. This behavior is achieved through the use of filters made up of resonant structures, which have resonators with electromagnetic coupling among them. Antennas present also an integral part of the microwave systems employed to transmit and receive electromagnetic waves for a multitude of purposes; they serve as a transducer that converts guided waves into free-space waves in the transmitting mode, or vice-versa in the receiving mode.

In this view, the present research work describes analytical problems of microwave cascaded filters and patch antennas and explains their physical behaviors with particular emphasis on major optimization challenges facing the device structure complexity. The different microwave devices are optimized using advanced computer aided tuning (CAT) techniques including coupling matrix, Defected Ground Structure (DGS) and Artificial Neural Networks (ANN) to vary the device geometry and maximize its performance with a high accuracy for the selective band of frequencies.

Key words: Coupled Resonator Filter, Space mapping, Cauchy method, Patch Antennas, Coupling Matrix, DGS, ANN Optimization.
Table of contents

Dedication II
Acknowledgement III
Abstract III
List of Figures III
List of Tables III
List of Abbreviations III
General Introduction 02

Chapter One: An Overview of Microwave Bandpass Filter Theory 05

1.1 Introduction 06
1.2 Filters Approximation 06
 1.2.1 Butterworth Function Approximation 06
 1.2.2 Chebyshev Function Approximation 08
 1.2.3 Elliptic Function Approximation 10
1.3 Elements Realization for Lowpass Prototype Filters 11
 1.3.1 Butterworth Lowpass Prototype Filters 12
 1.3.2 Chebyshev Lowpass Prototype Filters 12
 1.3.3 Elliptic Lowpass Prototype Filters 13
1.4 Lowpass Prototype to Bandpass Filter Transformation 14
 1.4.1 Lowpass Prototype Filter with ideal J and K inverters 15
1.5 Extraction Circuit Models for Chebyshev Bandpass Filters 16
1.6 Influences of losses on bandpass filters 18
1.7 Conclusion 19

Chapter Two: Defected ground structure (DGS) Technique 21

2.1 Introduction 22
2.2 Defected Ground Structure Element 22
2.3 Frequency Characteristics of DGS Unit 23
2.4 Analysis and Design of the DGS 24
 2.4.1 DGS Frequency Features 24
 2.4.2 Circuit Equivalent Modeling and Parameter Diagnostic 25
 a. Circuit Modeling: Parallel LC 25
 b. Circuit Modeling: Parallel RLC 29
2.5 Various DGS slots Topologies Modeling 33
 2.5.1 Study of Double Triangular-Head DGS (DTH-DGS) 33
 a. Effect of Slot Head Dimension (a=b) 33
 b. Effect of Slot Width (g) 34
 c. Effect of the slot length (d) 35
 2.5.2 Study of Triangular-Head-DGS (TH-DGS) 36
 a. Effect of Slot Head Dimension (a=b) 37
 b. Effect of Slot Width (g) 38
 c. Effect of the slot length (d) 39
2.6 Design of proposed Quasi-Elliptic Lowpass Filter with single attenuation pole 40
 2.6.1 Conception of typical Hi-LO Lowpass Filter (LPF) 40
 2.6.2 Propose of Quasi-Elliptic Lowpass Filter based semicircular- DGS 44
2.7 Conclusion 48

References 49

Chapter Three: Microwave Filter Optimization: Polynomial and Coupling Matrix 50
3.1 Introduction 51
3.2 Basic Equations for Polynomials Function for Filter Networks 51
 3.2.1 Transmission and Reflection Polynomial Synthesis 53
 3.2.2 Normalization of the transfer function and characteristic polynomials 55
 3.2.3 Characteristic and properties of the design polynomials 57
 3.2.4 Polynomial synthesis for Symmetric and Asymmetric Filtering Functions examples 60
3.3 Generalized Chebyshev Polynomials Approximation (Pseudo Elliptic) 62
 3.3.1 Polynomial Synthesis 63
 3.3.2 Recursive Cameron Algorithm 64
 3.3.3 Recursive Algorithm Implementation by Matlab 66
3.4 Coupling Matrix Synthesis of Microwave Filters 67
 3.4.1 Coupling Matrix Definition 67
 3.4.2 Impedance Matrix Calculation 68
 3.4.3 The Formulation General of the Coupling Matrix CM 72
3.5 Synthesis process of the (N +2) Transversal Coupling Matrix 73
 3.5.1 Basics for (N x N) Coupling Matrix Synthesis 73
 3.5.2 (N+2) Transversal Coupling Matrix Representation 74
 a. Calculation of Admittance Function [Y]-Parameters 74
 b. Circuit Approach: Transversal Microwave Filter Network 75
 c. Construction of Transversal Coupling Matrix (TCM) 76
 d. Reduction of Transversal Coupling Matrix to the Folded Canonical Form 77
3.6 Illustrative examples and discussions 78
 3.6.1 Illustrative Example I: Simulated fifth-Order Filter with Four TZs 78
 3.6.2 Illustrative Example II: Diagnosis of a Fourth-Order Filter with one TZ- 81
3.7 Computer–Aided Tuning and Diagnosis Techniques of Microwave Filters 84
 3.7.1 Bandpass Filter Modeling and Synthesis 84
 3.7.2 Generalized Formulation of Cauchy Method for Parameter Extraction (PE) 86
 3.7.3 General Formulation of Aggressive Space Mapping (ASM) Optimization Algorithm 88
3.8 Design and Optimization of Five Pole Coaxial Microwave Bandpass Filter 91
 3.8.1 Design Coaxial Filter Using the Coupling Matrix Model 91
 3.8.2 Physical Realization of Coupling Matrix 94
 a. Calculation of Resonance Frequency of Coaxial Resonator Cavity Configuration 94
 b. Calculation of wall Dimensions for Inter-resonator Coupling 94
 c. External Quality Factor (Q_{ext}) Calculation 95
 3.8.3 Hybrid Optimization Using the Cauchy and ASM techniques 96
 a. Dimensioning problem for coaxial microwave filter Design 96
 b. Proposed Solution Using the Combinations of Cauchy/ ASM Techniques 97
Chapter Four: Substrate Integrated Waveguide Antennas

4.1 Introduction

4.2 Principles and Classification of Antennas

4.3 Microstrip Antenna

4.4 Waves in Microstrip
 4.4.1 Surface Waves
 4.4.2 Leaky Waves
 4.4.3 Guided Waves

4.5 Basic Characteristics

4.6 Feeding Methods
 4.6.1 Microstrip Line
 4.6.2 Co-axial Probe
 4.6.3 Aperture Coupling
 4.6.4 Proximity Coupling

4.7 Methods of Analysis
 4.7.1 Transmission line model
 a. Effective Length, Resonant Frequency, and Effective Width
 b. Conductance Resonant, Input Resistance and Matching Techniques
 4.7.2 Cavity model

4.8 Substrate Integrated Waveguides
 4.8.1 SIW design rules
 4.8.2 Guided wave and Leaky wave Regions of Operation
 4.8.3 Circular Substrate Integrated Waveguide Cavity

4.9 Neural Network Algorithm
 4.9.1 Feed-forward (Input Signal)
 4.9.2 Back Propagation (Output Error)

4.10 Results and discussion
 4.10.1 Simulation Software
 4.10.2 Proposed antennas geometry and design procedures
4.10.3 Artificial neural network modeling of SIW antenna 148
 a. Results and discussion of circular SIW antenna (microstrip-to-SIW transition) 149
 a.1 Data generation 149
 a.2 Network architecture and training 149
 a.3 Optimization results 151
 b. Results and discussion of SIW antenna (coax-to-SIW transition) 152
 b.1 Design and data generation 152
 b.2 Network architecture and training 154
 b.3 Optimization Procedure 156
 b.4 Simulated Return Losses 158
 b.5 Input Impedance and Radiation Pattern 159
 b.6 Equivalent Circuit Model 160

4.11 Conclusion 162

References 157

General Conclusion 170

List of publications 175